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Brief Comparison of Transverse Single Bunch Effects Observed in Different Machines

ESRF APS Spring-8 ELETTRA ALS BESSY II DAFNE

TMCI Ith [mA] 0.8 2 3 40 14 5 >100 mA

TMCI Total charge Qth
[nC]

2.25 7.36 14.4 34.6 9.18 4 >32.6

Theta = Qs/Qth [1/nC] 0.0025 0.001 0.0005 0.00027 0.0008 0.0014 <0.00034
Qth/(Qth)ESRF 1 3.27 6.4 15.4 4.1 1.8 >14.5
(Theta)ESRF/Theta 1 2.5 5 9.3 3.1 1.8 >7.35

Iope/Ith 19 6 5.3 0.75 2.64 - -
GziV 12.9 6 4 0.8 0.5 - 0
GziH 7.6 3 7 0.5 0.5 - 0
fGziV [GHz] 24.6 7.2 5.7 0.6 0.5 - 0
fGziH [GHz] 14.5 3.6 10 0.4 0.5 - 0

f0 [kHz] 355 272 209 1157 1524 1249 3069
Qs 0.0056 0.0074 0.0072 0.0095 0.0073 0.0056 0.011

Data provided with the courtesy of:
K. Harkay (APS)
T. Nakamura (SPring-8)
E. Karantzoulis (ELETTRA)
J. Byrd (ALS)
S. Khan and P. Kuske (BESSY II)
A. Ghigo (DAΦNE)
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⇒ Although the problem is particularly serious for the ESRF, similar
trends are found in other light sources as well.
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-  Increase of mode detuning with installation of ID low gap chambers in
ELETTRA:

P. Kernel, R. Nagaoka, J.L. Revol, and L. Tosi, ESRF-ELETTRA collabo, July99; E.
Karantzoulis et al.,"Observation of Instabilities in the ELETTRA Storage Ring",
EPAC94, London, 1994; C.J. Bocchetta et al., "Collective Effects at ELETTRA",
EPAC98, Stockholm, 1998.

- A similar observation has been reported from ALS.
(J. Byrd, "Observations of single bunch collective effects in ALS", talk given at
Impedance Workshop, Stanford, March 00)

o Larger positive ξV increases the threshold current. However, at the

ESRF it is observed that;
- Feedback efficiency is significantly reduced.
- Peak betatron tunes are shifted many synchrotron sidebands away (|m| < 10).
- The beam is apparently unstable and blown up.
- ξV too large creates lifetime problems.

ESRF: Measured on 17 Jan 2000
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Observation and Analysis of Transverse Single Bunch
Threshold Behaviour at Positive Chromaticities

To understand the physics of ξξ > 0 regime
(i.e. what determines Ith)  ≡≡   Main goal of the study

⇒ Both experimental and theoretical studies carried out at the ESRF
(G. Besnier*, Ph. Kernel**, R. Nagaoka, and J.L. Revol)

* From University of Rennes, Rennes, France

** Thesis student at the ESRF since 1997

q Experimental observations at "small positive chromaticities"

Left:  "Double thresholds" observed at the ESRF with ξ ~0.26.
Right: Evolution of peak head-tail frequencies with current in APS (K. Harkay et al,

"Impedance and the Single Bunch Limit in the APS Storage Ring", PAC99)

-  On top of slight defocusing of each mode, continuous transitions of
mode excitations towards higher-orders (m = 0, -1, -2, ...) are seen.
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-  The observations can be interpreted in terms of the classical theory of
Sacherer: A mode that sees more the negative real part of the
impedance becomes unstable.
(F.J. Sacherer, "Transverse Bunched-Beam Instability - Theory", Proc. 9th Int.

Conf. on High Energy Accelerators, Stanford 1974, p.347)
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q Experimental observations of thresholds versus positive chromaticities

Nonlinear rise of threshold current with
increasing ξ > 0.

Large shifts of head-tail frequencies with
increasing ξ > 0.
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Theoretical Foundation

Vlasov Equation  ⇒  Linearlised Vlasov (Sacherer's integral equation)
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(cf.  Eq. 180 of J.L. Laclare, "Bunched-Beam Coherent Instabilities", CERN 87-03)

- Classical head-tail motion if restricted to a single mode.
- Mode-merging if coupling terms are included.

Numerical Methods

1) Frequency Domain Approach :
Eigen solution of modal equations (essentially, solution of Eq. 1).

q  "MOSES" or "MOSES-like" programs
(Several different versions created at the ESRF)

(cf. Y.H. Chin, "Users’s Guide for New MOSES (MOde-coupling Single bunch

instabilities in an Electron Storage ring)", CERN/LEP-TH/88-05)
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1) Time Domain Approach :

Multi-particle tracking

Basic Transformations:
Transverse:
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q ESRF development (Ph. Kernel et al.)
Use of analytical wake functions (BBR + RW), inclusion of amplitude-
dependent tune shift, longitudinal wake, full 6-dimension.

q SPring-8 development "SISR"  (T. Nakamura)
Use of estimated and calculated impedance (Þ converted to wake
functions) for various machine components.

q APS development "ELEGANT" (M. Borland)
Use of analytical wake function (BBR), full 6-dimensional tracking.

q "TRISM-3D"  at CERN (D. Brandt, G.L. Sabbi, B. Zotter et al.)
Direct use of wake potentials calculated by wake computation codes
(MAFIA, ABCI,...), convolution with "triangular basis functions".
Full 6-dimensional tracking with coupling terms included.
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ESRF studies (cont'd)

q Fitting the observed mode-merging instability with the Broadband
Resonator model gives RT.β ~ 13 MΩ, fres = 22 GHz, Q = 1.

q Our initial picture was a successive interaction of higher-order head-
tail modes with the peak negative resistivity (around –22 GHz).

q Although tracking reproduces rather well the threshold curve with the
obtained BBR model, it requires to assume a much shorter
damping time (= 0.2 ms) than the radiation damping (7 ms), even
shorter than the synchrotron period (0.5 ms).

q A question arose if the notion of “head-tail modes” is still valid when
Ts/ττ > 1, if modes as high as |m| ~ 10 can drive such a strong
instability, and why the stability lasts until the fast growth develops.

q  Solution of the most general equation for head-tail motions

(Divide Eq. 1 by  j(ωc - mωs)  and sum over m)
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 (Eq. 195 of J.L. Laclare, “Bunched Beam Coherent Instabilities”, CERN 87-03)

In which, a beam harmonic is
coupled to all other beam harmonics (…bunched beam nature)
and composed of all possible head-tail modes.

- In case of a Gaussian beam, the summation over  m  can be carried out
analytically.
 i.e.  Head-tail modes disappear completely from the equation.
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- The complex coherent frequency is numerically searched through the
eigenvalue problem.

-  An example of numerical solution of Eq. 6:
ESRF parameters
(RT = 13 MΩ/m, fres = 22 GHz, Q =1 ), Vrf = 9 MV

Chromaticity (normalised) = 0.5, and no bunch lengthening
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⇒ Observe that at around the same point (~1 mA), the coherent tune, the
growth rate as well as the beam spectrum all show a transition-like
behaviour.
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q  Some experimental evidence:

8 MV
10 MV

Observation of spontaneous head-tail frequencies as a function of the RF
voltage Vrf.

⇒  Appearance of neighbouring mode frequencies as the instability is
enhanced with an increase of Vrf (8 à 10 MV).

q Both experimental and numerical results suggest that the current
threshold in ξ > 0 nonlinearly approaches a regime where the growth
time is comparable to or shorter than the synchrotron period.
à A mode-merging like instability initially develops among

neighbouring modes.
à All head-tail modes finally contribute to a highly excited bunch

state.
à The concept of head-tail motions may be lost.

This regime is tentatively named as a “post head-tail regime”.
(This idea was firstly proposed by G. Besnier within  the group)
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q In the literature one finds a study with a similar motivation being
already made by R.D. Ruth and J.M. Wang.

(R.D. Ruth and J.M. Wang, “Vertical Fast Blow-up in a Single Bunch”,
IEEE Transactions on Nuclear Science, NS-28, No. 3, June 1982)

From the previous most general coupled-equation (Eq. 6), they
approximately derived a dispersion relation similar to that of the
coasting beam theory, describing the fast blow up of the beam:
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q An independent derivation of a similar constraint has recently been
carried out by G. Besnier, including attempts to introduce a stability
criteria.

It is supposed that the blow-up of the beam is postponed due to
existing stabilisation effects such as,

- bunch lengthening ( reduced Ipeak)

- synchrotron tune spread ∆fs
- betatron tune shift with amplitude

until the beam reaches the fast blow-regime.

The tune spread due to energy ∆Qβ  = Qβ.ξ.∆p/p0 would then act as an

additional stabilisation force, since the growth time is shorter than the
synchrotron period.

The fast blow-up would occur when the coherent frequency shift
exceeds the width of the tune spread with energy.

⇒  Justification of the derived scenario is underway.
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Surrounding Issues

(1) Impedance (Wake field) Estimates and Calculations

p  Clarify relative contributions of different machine components
(Taper, resistive-wall of low gap chambers, bpm, rf-finger, ...)

- Work made at SPring-8 to evaluate various machine components.
(T. Nakamura, "The Broad-Band Impedance of the Spring-8 Storage Ring",
EPAC96)

- Taper calculations made at the ESRF using NOVO, TBCI, ABCI and
GdfidL (T. Guenzel et al.).

15 mm ESRF ID taper:

ESRF 15 mm ID gap taper 
(sigma=4mm, DR=0.5 mm, DZ=1 mm)
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p Looking into semi-analytical approaches as benchmarks.

- Analytical formulae for tapers
e.g.   R. Warnock's formula (SLAC-PUB-6038, 1993)

ZL
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p Beam-based transverse impedance modelling.
Many works made in different machines (APS, Spring-8, ESRF,
ALS, ELETTRA, …)
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p  Links to beam-based impedance modelling and calculations.

- At APS, the taper impedance deduced from the measured detuning
agrees with that estimated using a formula (Bane and Krinsky,
PAC93) by ~30%.
(K.J. Kim, "APS Measurement", Impedance Workshop, Stanford, March 00)

(2) Diagnostics and its development

p  At the ESRF, both the streak camera and the X-ray pinhole cameras
are very useful in following the beam stability, especially when the
involved frequency range of the phenomena is high (> 10 GHz).

p  Combination of X-ray pinhole (capable of measuring the vertical
emittance down to ~5 pm.rad) and a low coupling operation enables
an early detection of the onset of vertical instabilities.

p  Needs of high-frequency pickups and shakers for high chromaticity
operations.

Observed head-tail motions with a streak
camera in the vertical mode (ESRF, K.

Scheidt et al.)

Transverse beam profile measured with a
X-ray pinhole camera (ESRF)

 (3) Feedback development

p An idea recently came up at the ESRF for an extended scheme to
apply in the fast beam blow-up regime (E. Plouviez).
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Conclusion

o Despite the ESRF case being particularly serious, single bunch
transverse instability (TMCI) thresholds appear at a much lower value
than the operating current in many light sources.

o The principal cause of the instability seems to be closely linked with
installation of low gap ID chambers that enhances the mode detuning.

o Shift of the chromaticity to a larger positive value or feedback help
operate the machine at a higher single bunch current. The ESRF case is
far above what the feedback can cope with.

o With ξ > 0 operation, the single bunch is expected to be intrinsically
unstable transversally. Stabilisation effects existing in the machine help
postpone the beam blow up.

o Studies of the threshold behaviour at a large current with a large
chromaticity suggest that the beam be in a fast blow up ("post head-
tail") regime, where the head-tail motions no longer play any effect.

o Importance of surrounding issues;
- Impedance calculations (taper, bpms, rf-shields, ...)
- Extended feedback schemes
- High frequency/resolution diagnostics

to improve the stability.
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