Development of thermoelectric cooling system for the PERCIVAL

IFDEPS VT April 8, 2021

HyoJung Hyun¹, Seonghan Kim¹, Kee Hyuk Sung², Chan Park² and Young Gyoon Yoon²

¹ Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea

² LIVINGCARE R&D Center, Gunpo, Gyeonggi 15850, Republic of Korea

Specification of PERCIVAL & Requirements for the Cooling System

Energy range [keV]	0.25 ~ 1		
Pixel size [μm]	27		
Number of pixels	2M – 1408 × 1484		
Imaging area [mm × mm]	40 × 40 uninterrupted		
Full well [e-]	3.5×10^{6}		
Dynamic range [photons/pixel]	5.0 × 10 ⁴ at 250 eV		
Noise [e-rms]	<15		
Noise [e-rms] Quantum efficiency	<15 >85%, uniform over pixel and over energy range		
Quantum efficiency	>85%, uniform over pixel and over energy range		
Quantum efficiency Frame rate [Hz]	>85%, uniform over pixel and over energy range Up to 300		

There are Mo and Cu blocks between the sensor and the thermoelectric element

Position of thermoelectric element

[BSI detector head]

- Detector should be operated at low temperature (from -20 °C to -40 °C)
- Estimated power consumption of the sensor is about 10 W
- Area of the thermoelectric element should be limited to 50 mm × 42 mm

Fabrication of Thermoelectric Elements

- To meet the requirements, thermoelectric elements are designed and manufactured
- In case of 2nd new elements
 - It covers the entire cross-sectional area of Cu block as much as possible
 - The degree of integration increases about 20 % compared to 1st new element

	Commercial Element		1 st New Element		2 nd New Element	
Model name	LM-4040-3.4-23.9		LM-4040-3.4-28.9		LM-5042-3.0-37.3	
T _h [°C]	27	50	27	50	27	50
Q _{MAX} [W]	81.9	92.1	99.2	111.5	128.0	144.0
I _{MAX} [A]	6.0	6.0	6.0	6.0	6.0	6.0
V _{MAX} [V]	23.9	25.7	28.9	31.1	37.3	40.2
ΔT _{MAX} [°C]	70	79	70	79	70	79
Resistance [Ω]	3.4	-	4.0	-	5.1	-
Dimension [mm³] (A × B × H)	40 × 40 × 3.4		40 × 40 × 3.4		42 × 50 × 3.0	

Efficiency of Heat Transfer

- Heat transfers by conduction in vacuum
 - → There should be NO gap at every interface
 - Indium sheet is used at every interface
 - Bolts holes on the copper block are molded with indium
 - Over torque (22 kgf·cm) for the assembly bolts is applied
 - Water jacket consists of only copper is replaced to new water jacket made of copper and stainless steel
- Any other parameters
 - Number of thermoelectric elements is two
 - Set temperature for water chiller is determined to be +10 °C

[Dummy test block with original water jacket]

[Dummy test block with new water jacket]

Configuration of Thermoelectric Cooling System and Result

- The cooling system consists of two thermoelectric elements, water jacket, temperature controller and chiller
- The set temperature can be achieved by adjusting power to the second element with PID control

	Set temperature for feedback : -35 °C						
	Heater power	Time	Temperature [°C]				
		after Peltier ON [min]	Water jacket	Cu block			
	0 W	4	+16.4	-14.5			
		6	+16.1	-22.4			
		8	+16.0	-30.2			
		10	+15.6	-35.1			
	13 W	12	+15.8	-35.0			
		14	+15.7	-35.0			
	14 W	16	+15.8	-35.0			
		18	+15.8	-35.0			
		20	+15.8	-35.0			
		22	+15.8	-34.8			
	15 W	24	+15.8	-34.9			
		26	+15.8	-35.0			
		28	+15.8	-35.0			

BACKUP SLIDES

Test Setup

New Water Jacket

- Water jacket structure simulated by using ANSYS:

 22 kgf·cm torque applied to the bolts →

 Deformation checked
- When Cu thickness increased
 → The maximum value of the deformation is decreased, but the effect is not big
- When stainless steel cover used together Cu→ The cover helps to decrease the maximum
 - deformation value
 - → However, the thickness of the cover does not matter much
- The stainless steel cover is more important than Cu being thicker

